4 Resultados Numéricos

Neste capítulo, exemplos de aplicação da modelagem desenvolvida no Capítulo 3 são apresentados. Especificamente, 3 casos são considerados. Como o modelo de atenuação por chuvas é fortemente dependente da frequência do enlace, os dois primeiros casos exemplificam situações relativas a enlaces em duas faixas de frequência: 19 e 29 GHz. No terceiro caso, é examinada uma situação específica em que o enlace considerado utiliza controle automático de potência (APC) para aliviar os efeitos da atenuação devida a chuvas.

A base de funções ortonormais $\{\phi_i(Y), i = 1, ..., n\}$ escolhida para representar a função densidade de probabilidade da degradação devida a interferências $p_y(Y)$ no intervalo (Y_{min}, Y_{max}) foi obtida a partir dos polinômios de Legendre deslocados (*shifted Legendre polynomials*), $\{P_i(Y), i = 0, 1, ...\}$, cuja definição é apresentada no Apêndice A. O relacionamento entre as funções de base $\{\phi_i(Y), i = 1, ..., n\}$ e os polinômios de Legendre deslocados é dada por

$$\phi_i(Y) = \bar{P}_{i-1} \left(\frac{Y - Y_{min}}{Y_{max} - Y_{min}} \right) \quad ; \quad i = 1, 2, \dots, n \quad ; \quad Y_{min} < Y < Y_{max} \quad (4-1)$$

onde $\bar{P}_i(Y)$ constituem os polinômios de Legendre deslocados, normalizados para energia unitária, ou seja

$$\bar{P}_i(Y) = \frac{P_i(Y)}{\sqrt{\int_0^1 P_i^2(Y)dY}} \quad ; \quad i = 0, 1, \dots, n-1$$
(4-2)

Neste trabalho, a degradação devida a chuvas foi obtida através do modelo de atenuação por chuvas estabelecido na Recomendação ITU-R P.618-7 [7]. O procedimento para cálculo da distribuição cumulativa de probabilidade de atenuação devida a chuvas, descrito no Item 2.2.1.1 dessa Recomendação, é apresentado no Apêndice B.

A solução do problema de maximização definido na Seção 3.3 foi obtida

utilizando-se o algoritmo Simplex de Programação Linear [2]. A função objetivo utilizada, definida em (3-51), considerou a possibilidade de ocorrência de valores de degradação y em todo o intervalo, ou seja, considerou-se $\mathcal{S} = (Y_{min}, Y_{max}).$

A razão $\left(\frac{E_b}{N_0}\right)_{CS}$ (Energia de bit/Nível espectral de ruído térmico em condições de céu claro) foi determinada através do cálculo de enlace onde apenas a presença de chuvas é considerada (ver procedimento apresentado no Apêndice C).

Para obter a solução do problema de maximização definido na Seção 3.3, para as situações apresentadas a seguir, partiu-se da condição inicial onde a degradação y é igual a Y_{min} durante todo o tempo, ou seja, $y = Y_{min}$ com probabilidade 1. Neste caso, $p_y(Y) = \delta(Y - Y_{min})$, conforme mostra a Figura 4.1, e consequentemente,

$$\alpha_i = \left\{ \begin{array}{ll} 1 & ; \ i=0 \\ 0 & ; \ i=1,...,n+1 \end{array} \right.$$

Cada um dos casos analisados é apresentado a seguir.

Figura 4.1: Função densidade de probabilidade da degradação devida a interferências externas - condição inicial

Caso 1: Enlace em 19GHz

No caso de um enlace de comunicação operando em 19 GHz, foram considerados os parâmetros apresentados na Tabela 4.1. Inicialmente, com base nestes parâmetros e no procedimento descrito no Apêndice B, obtevese a distribuição cumulativa de probabilidade de atenuação devida a chuvas mostrada na Figura 4.2.

Tabela 4.1: Parâmetros considerados no enlace em 19 GHz

taxa de precipitação pluviométrica - $R_{0.01}$ - $[mm/h]$	100
altitude acima do nível do mar da estação terrena receptora - h_s - [km]	0
ângulo de elevação da antena da estação terrena receptora - θ - [graus]	25
latitude da estação terrena receptora - φ - [graus]	-30
frequência de operação do enlace - f - [GHz]	19
raio efetivo da Terra - R_e - [km]	8500

Figura 4.2: Distribuição cumulativa de probabilidade da degradação devida a chuvas para o enlace em 19 GHz

Além disso, foram considerados os seguintes dados adicionais:

- (i) Os requisitos de desempenho associados aos valores da razão E_b/N_0 são mostrados na Tabela 4.2, (m = 3).
- (ii) Foram utilizados os sete primeiros polinômios de Legendre deslocados para representar a função $p_y(Y)$ no intervalo $(Y_{mim}, Y_{max}), (n = 7).$

BER_j	$(E_b/N_0)_j$ (dB)	p_j
1×10^{-6}	6,5	0,0004
1×10^{-8}	$7,\!6$	0,006
1×10^{-9}	8,7	0,04

Tabela 4.2: Requisitos de desempenho para o enlace em 19 GHz

- (iii) Para implementação da restrição em (3-62), o intervalo $[Y_{mim}, Y_{max}]$ foi discretizado tomando-se 3001 pontos igualmente espaçados no referido intervalo, ou seja, $N_p = 3001$. Testes efetuados com valores menores $(N_p = 1001 \text{ e } N_p = 101)$ produziram resultados cujas diferenças em relação aos obtidos com $N_p = 3001$ mostraram-se insignificantes.
- (iv) Os valores de Y_{mim} e Y_{max} relativos à função $p_y(Y)$ foram fixados em 0 e 5 dB, respectivamente.

Partindo-se da condição inicial dada por $\alpha_0 = 1$ e $\alpha_i = 0$, i = 1, ..., n+1, ou seja, da condição em que a degradação devida a interferências é zero com probabilidade 1, obteve-se, como solução do problema de otimização definido na Seção 3.3, o valor ótimo $\boldsymbol{\alpha}^*$, dado por

$$\boldsymbol{\alpha}^{\star} = \begin{pmatrix} 0,0909\\ 0,1820\\ -0,2701\\ 0,2586\\ -0,1925\\ 0,1122\\ -0,0473\\ 0,0115\\ 0,0000 \end{pmatrix}$$

A partir desta solução, foi obtida a função $p_y(Y)$ apresentada na Figura 4.3. Nesta figura estão indicados, por um asterisco, a condição inicial da função $p_y(Y)$ (impulso de área unitária) e, por um círculo, o impulso obtido na solução do problema de maximização. Note que a solução encontrada permite a ocorrência de degradação devida a interferências com probabilidade de, aproximadamente, 90% no intervalo $(Y_{min}, Y_{max}]$.

Integrando-se a função $p_y(Y)$, mostrada na Figura 4.3, obteve-se, então, a distribuição cumulativa de probabilidade da degradação y devida a inter-

Figura 4.3: Função densidade de probabilidade da degradação devida a interferências externas para o enlace em 19 GHz

ferências, cuja curva é apresentada na Figura 4.4.

Com base no relacionamento estabelecido em (3-72), entre a função distribuição de probabilidade da razão i/n e a função distribuição de probabilidade da degradação y devida a interferências externas, obtem-se, finalmente, a curva da distribuição cumulativa de probabilidade da razão i/n, mostrada na Figura 4.5. Como mostra esta figura, é possível, mediante a seleção de alguns pontos (indicados por asteriscos), definir uma máscara de i/n, a ser satisfeita pelo comportamento estatístico da interferência agregada presente no receptor vítima. Os pontos que definem esta máscara são apresentados na Tabela 4.3. Tabelas deste tipo, que limitam a potência do sinal interferente de modo a garantir a proteção do sistema interferido, são usualmente mostrados no Regulamento de Radiocomunicações da UIT. De acordo com este Regulamento, a máscara deve ser apresentada num gráfico, unindo-se os pontos por meio de retas. A Figura 4.6 apresenta a máscara assim obtida para os valores relacionados na Tabela 4.3.

A Figura 4.7 apresenta a distribuição cumulativa de probabilidade da degradação total z devida a chuvas e interferências. Nesta figura estão indicadas, em linha tracejada, a curva $1 - F_x(Z)$ correspondente à distribuição cumulativa de probabilidade da degradação total z na ausência de interferências e, em linha sólida, a curva $1 - F_z(Z)$ que corresponde à degradação total z

Figura 4.4: Distribuição cumulativa de probabilidade da degradação devida a interferências externas para o enlace em 19 GHz

Tabela 4.3:	Limites	para o	comportamento	estatístico	da	razão	i/r	ı no	enl	ace
em 19 GHz										

Nível γ da	Percentagem de tempo durante a
razão i/n	qual o nível γ não pode ser excedido
(dB)	(equivalente a $P(i/n \le \gamma)$)
-34,62	9,43
-24,91	12,23
-14,99	35,84
-10,00	70,78
-7,50	88,88
-3,80	99,26
-0,81	99,64
0	99,82
2,00	99,91
3,00	99,97

devida a chuvas e interferências e que considera a função densidade de probabilidade $p_y(Y)$ obtida com a solução do problema de maximização. Além disso, a figura também apresenta os pontos (Z_j, p_j) e $(Z_j, 0, 9p_j)$ que correspondem às restrições consideradas neste exemplo. Observe que a curva $1 - F_z(Z)$ toca apenas um dos pontos (Z_j, p_j) e que isto se deve ao formato da curva de distribuição cumulativa de probabilidade da degradação devida a chuvas do modelo da UIT (ver Figura 4.2). Note que, devido ao procedimento utilizado na obtenção de $(E_b/N_0)_{CS}$, descrito no Apêndice C, o ponto $(Z_j, 0, 9p_j)$ toca a

Figura 4.5: Distribuição cumulativa de probabilidade da razãoi/npara o enlace em 19 GHz

curva $1-F_x(Z)$ e representa a condição crítica de degradação devida somente a chuvas.

Figura 4.6: Exemplo de máscara obtida a partir da Figura 4.5

Figura 4.7: Distribuição cumulativa de probabilidade da degradação total z para o enlace em 19 GHz

Caso 2: Enlace em 29GHz

Considera-se aqui, um enlace de comunicação em 29 GHz, com os parâmetros apresentados na Tabela 4.4. A partir destes parâmetros e do procedimento apresentado no Apêndice B, obteve-se a distribuição cumulativa de probabilidade de atenuação devida a chuvas mostrada na Figura 4.8.

Tabela 4.4: Parâmetros considerados no enlace em 29 GHz

taxa de precipitação pluviométrica - $R_{0.01}$ - [mm/h]	100
altitude acima do nível do mar da estação terrena receptora - h_s - [km]	0
ângulo de elevação da antena da estação terrena receptora - θ - [graus]	30
latitude da estação terrena receptora - φ - [graus]	-20
frequência de operação do enlace - f - [GHz]	29
raio efetivo da Terra - R_e - [km]	8500

Figura 4.8: Distribuição cumulativa de probabilidade da degradação devida a chuvas para o enlace em 29 GHz

Observa-se da Figura 4.8 que, conforme esperado, a atenuação por efeito de chuvas na faixa de 29 GHz é bem maior do que aquela correspondente à faixa de 19 GHz (ver Figura 4.2). A atenuação excedida durante 0.01% do tempo, por exemplo, é aproximadamente 15 dB maior em enlaces operando na faixa de 29 GHz do que em enlaces operando na faixa de 19 GHz.

Foram também considerados os seguintes dados adicionais:

(i) Os requisitos de desempenho associados aos valores da razão E_b/N_0 são mostrados na Tabela 4.5, (m = 3).

BER_j	$(E_b/N_0)_j$ (dB)	p_j
1×10^{-6}	6,5	0,0004
1×10^{-8}	$7,\!6$	0,006
1×10^{-9}	8,7	0,04

Tabela 4.5: Requisitos de desempenho para o enlace em 29 GHz

- (ii) Os sete primeiros polinômios de Legendre deslocados foram utilizados para representar a função $p_y(Y)$ no intervalo $(Y_{mim}, Y_{max}), (n = 7)$.
- (iii) O intervalo $[Y_{mim}, Y_{max}]$ foi discretizado tomando-se 3001 pontos igualmente espaçados no referido intervalo $(N_p = 3001)$.
- (iv) Os valores de Y_{mim} e Y_{max} foram fixados em 0 e 14 dB, respectivamente.

Partindo-se da condição inicial dada por $\alpha_0 = 1$ e $\alpha_i = 0$, i = 1, ..., n+1, obteve-se, como solução do problema de otimização definido na Seção 3.3, o valor ótimo $\boldsymbol{\alpha}^*$, dado por

$$\boldsymbol{\alpha}^{\star} = \begin{pmatrix} 0, 3052\\ 0, 0496\\ -0, 0736\\ 0, 0702\\ -0, 0518\\ 0, 0299\\ -0, 0124\\ 0, 0029\\ 0, 0000 \end{pmatrix}$$

Com base nesta solução, foi obtida a função $p_y(Y)$ mostrada na Figura 4.9. São indicados nesta figura, por um asterisco, a condição inicial da função $p_y(Y)$ (impulso de área unitária) e, por um círculo, o impulso obtido na solução do problema de maximização. Observe que a solução encontrada permite a ocorrência de degradação devida a interferências com probabilidade de, aproximadamente, 69% no intervalo $(Y_{min}, Y_{max}]$.

Integrando-se a função $p_y(Y)$, obteve-se, então, a distribuição cumulativa de probabilidade da degradação y devida a interferências mostrada na Figura

Figura 4.9: Função densidade de probabilidade da degradação devida a interferências externas para o enlace em 29 GHz

4.10.

Considerando o relacionamento em (3-72), entre a função distribuição de probabilidade da razão i/n e a função distribuição de probabilidade da degradação y devida a interferências externas, obtem-se, então, a curva da distribuição cumulativa de probabilidade da razão i/n, mostrada na Figura 4.11. Alguns pontos, indicados na figura por asteriscos, foram selecionados para definir uma máscara de i/n, a ser satisfeita pelo comportamento estatístico da interferência agregada presente no receptor vítima. Tais pontos estão apresentados na Tabela 4.6. A Figura 4.12 apresenta a máscara obtida com base nos valores relacionados na Tabela 4.6.

A Figura 4.13 apresenta a distribuição cumulativa de probabilidade da degradação total z devida a chuvas e interferências. Nesta figura estão indicadas, em linha tracejada, a curva $1 - F_x(Z)$ correspondente à distribuição cumulativa de probabilidade da degradação total z na ausência de interferências e, em linha sólida, a curva $1 - F_z(Z)$ que corresponde à degradação total z devida a chuvas e interferências e que considera a função densidade de probabilidade $p_y(Y)$ obtida com a solução do problema de maximização.

Figura 4.10: Distribuição cumulativa de probabilidade da degradação devida a interferências externas para o enlace em 29 GHz

Figura 4.11: Distribuição cumulativa de probabilidade da razãoi/npara o enlace em 29 GHz

Nível γ da	Percentagem de tempo durante a
razão i/n	qual o nível γ não pode ser excedido
(dB)	(equivalente a $P(i/n \leq \gamma)$)
-30, 14	30,78
-22,35	32,05
-12, 21	44,66
-5,14	77,32
-3,16	87,73
-0,35	97,15
6,46	99,75
7,76	99,87
11,23	99,94
13,13	99,98

Tabela 4.6: Limites para o comportamento estatístico da razãoi/nno enlace em 29 GHz

Figura 4.12: Exemplo de máscara obtida a partir da Figura 4.10

Figura 4.13: Distribuição cumulativa de probabilidade da degradação total z para o enlace em 29 GHz

Caso 3: Enlace em 29GHz com controle automático de potência

Neste caso, considera-se um enlace de comunicação em 29 GHz, em que o equipamento transmissor opera com controle automático de potência (*Automatic Power Control* - APC). O controle automático de potência atua sempre que a degradação devida a chuvas atingir um determinado valor préestabelecido, elevando a potência de transmissão de modo que a degradação devida a chuvas não ultrapasse este valor. No caso apresentado a seguir, o valor estabelecido para atuação do APC foi 5 dB. Foram considerados os parâmetros apresentados na Tabela 4.7. A partir destes parâmetros e do procedimento apresentado no Apêndice B, obteve-se a distribuição cumulativa de probabilidade de atenuação devida a chuvas, mostrada na Figura 4.14. Observe, nesta figura que, devido ao APC, o valor máximo da degradação devida a chuvas é igual a 5 dB.

Tabela 4.7: Parâmetros considerados no enlace em 29 GHz, com APC

taxa de precipitação pluviométrica - $R_{0.01}$ - $[mm/h]$	100
altitude acima do nível do mar da estação terrena receptora - h_s - [km]	0
ângulo de elevação da antena da estação terrena receptora - θ - [graus]	30
latitude da estação terrena receptora - φ - [graus]	-20
frequência de operação do enlace - f - [GHz]	29
raio efetivo da Terra - R_e - [km]	8500

Adicionalmente, os seguintes dados foram considerados:

(i) Os requisitos de desempenho associados aos valores da razão E_b/N_0 são mostrados na Tabela 4.8, (m = 3).

Tabela 4.8: Requisitos	de desempenho	para o enlace em 2	9 GHz, com APC
1	1	1	

BER_j	$(E_b/N_0)_j$ (dB)	p_j
1×10^{-6}	$6,\!5$	0,0004
1×10^{-8}	$7,\!6$	0,006
1×10^{-9}	8,7	0,04

- (ii) Foram utilizados os onze primeiros polinômios de Legendre deslocados para representar a função $p_y(Y)$ no intervalo $(Y_{mim}, Y_{max}), (n = 11).$
- (iii) O intervalo $[Y_{mim}, Y_{max}]$ foi discretizado tomando-se 3001 pontos igualmente espaçados no referido intervalo $(N_p = 3001)$.
- (iv) Os valores de Y_{mim} e Y_{max} relativos à função $p_y(Y)$ foram fixados em 0,25 e 2,5 dB, respectivamente.

Figura 4.14: Distribuição cumulativa de probabilidade da degradação devida a chuvas para o enlace em 29 GHz, com APC

A partir da condição inicial dada por $\alpha_0 = 1$ e $\alpha_i = 0$, i = 1, ..., n + 1, obteve-se, como solução do problema de otimização definido na Seção 3.3, o valor ótimo $\boldsymbol{\alpha}^*$, dado por

$$\boldsymbol{\alpha}^{\star} = \begin{pmatrix} 0,0000\\ 0,4444\\ -0,7094\\ 0,7803\\ -0,7232\\ 0,5881\\ -0,4230\\ 0,2689\\ -0,1486\\ 0,0698\\ -0,0260\\ 0,0067\\ 0,0000 \end{pmatrix}$$

A partir desta solução, obteve-se, então, a função $p_y(Y)$ apresentada na Figura 4.15. Como pode ser observado, a solução encontrada permite a ocorrência de degradação devida a interferências com probabilidade de 100% no intervalo $(Y_{min}, Y_{max}]$.

Figura 4.15: Função densidade de probabilidade da degradação devida a interferências externas para o enlace em 29 GHz, com APC

Integrando-se a função $p_y(Y)$, obteve-se a distribuição cumulativa de probabilidade da degradação y devida a interferências, cuja curva é mostrada na Figura 4.16.

Finalmente, a partir do relacionamento em (3-72), entre a função distribuição de probabilidade da razão i/n e a função distribuição de probabilidade da degradação y devida a interferências externas, obtem-se a distribuição cumulativa de probabilidade da razão i/n mostrada na Figura 4.17. Mediante a seleção de alguns pontos, indicados na figura por asteriscos e relacionados na Tabela 4.9, pode-se, então, definir uma máscara de i/n, a ser satisfeita pelo comportamento estatístico da interferência agregada presente no receptor vítima. A Figura 4.18 apresenta a máscara obtida a partir dos valores apresentados na Tabela 4.9.

A Figura 4.19 apresenta a distribuição cumulativa de probabilidade da degradação total z devida a chuvas e interferências. Nesta figura estão indicadas, em linha tracejada, a curva $1 - F_x(Z)$ correspondente à distribuição cumulativa de probabilidade da degradação total z na ausência de interferências e, em linha sólida, a curva $1 - F_z(Z)$ que corresponde à degradação total z

Figura 4.16: Distribuição cumulativa de probabilidade da degradação devida a interferências externas para o enlace em 29 GHz, com APC

devida a chuvas e interferências e que considera a função densidade de probabilidade $p_y(Y)$ obtida com a solução do problema de maximização.

Figura 4.17: Distribuição cumulativa de probabilidade da razãoi/npara o enlace em 29 GHz, com APC

Tabela 4.9: Limites para o comportamento estatístico da razãoi/nno enlace em 29 GHz, com APC

Nível γ da	Percentagem de tempo durante a
razão i/n	qual o nível γ não pode ser excedido
(dB)	(equivalente a $P(i/n \leq \gamma)$)
-13,90	0,00
-11,45	41,63
-10,33	78,27
-9,31	93,84
-8,05	99,29
-7,21	99,78
-5,48	99,85
-4,27	99,89
-2,66	99,93
-1,89	99,95

Figura 4.18: Exemplo de máscara obtida a partir da Figura 4.15

Figura 4.19: Distribuição cumulativa de probabilidade da degradação total z para o enlace em 29 GHz, com APC